
Identity & 
Authentication

Scott Kirkland
UC DAVIS

















Authentication @ the UCs

● CAS

● Shibboleth

● OAuth

● OpenID Connect

● SAML

● Federation

● JWTs

● Claims



Authentication @ the UCs

● CAS

● Shibboleth

● OAuth / OpenID Connect



Central Authentication Service

● Developed at Yale

● Now supported by Apero Foundation

● Used at many UC Campuses



Let’s talk CAS Protocol

● Fairly simple™ so we’ll start here

● Web-based login flow

● Includes backchannel validation



MyApp Client CAS
Admin Page Please

Client: https://myapp.ucdavis.edu/admin



MyApp Client CAS
Admin Page Please

Redirect to CAS

Server: https://cas.ucdavis.edu/cas/login?service=[myappurl]&state=[privatestate]

Request CAS



MyApp Client CAS
Admin Page Please

Redirect to CAS

Server: https://cas.ucdavis.edu/cas/login?service=[myappurl]&state=[privatestate]

Request CAS

Authenticate CAS





MyApp Client CAS
Admin Page Please

Redirect to CAS

CAS: https://myapp.ucdavis.edu/login?state=[privatestate]&ticket=[casticket]

Request CAS

Authenticate CAS

Redirect to MyApp
Request MyApp



MyApp Client CAS
Admin Page Please

Redirect to CAS

MyApp: https://cas.ucdavis.edu/cas/validate?service=[myappurl]&ticket=[casticket]

Request CAS

Authenticate CAS

Redirect to MyApp
Request MyApp

Backchannel Validation



MyApp Client CAS
Admin Page Please

Redirect to CAS

MyApp: Valid “yes + kerberos” response from backchannel

Request CAS

Authenticate CAS

Redirect to MyApp
Request MyApp

Backchannel Validation

Validation Pass



MyApp Client CAS
Admin Page Please

Redirect to CAS

MyApp: https://myapp.ucdavis.edu/admin

Request CAS

Authenticate CAS

Redirect to MyApp
Request MyApp

Backchannel Validation

Validation Pass

Admin Page OK



CAS Timeline (DEMO)



Shibboleth

● Single Sign-On Platform

● Created & Supported by Internet2

● Used by every UC Campus

○ And 500+ other Educational & Research Institutions



SAML

● Shibboleth software implements Security Assertion 

Markup Language (SAML)

● Provides a federated single sign-on and attribute 

exchange framework



SAML

● SAML is an XML based standard, including an:

○ XML language (tags)

○ XML message protocol.

● SAML 2.0, the current standard, was created in 2005.



Concepts

Identity Provider (IdP)

● Authentication Authority

● User-identity source

● Centrally Installed

Service Provider (SP)

● Authentication Client

● Discovers IdP

● Web Server Installed



Authentication Flow

● Web based login flow

● Includes attribute release

● No backchannel validation needed



Step 0

● Need to install Service Provider (SP)

● Generally installed on web server

○ Works with IIS, Apache, Nginx and more

● Configure with shibboleth2.xml file



SP Config

● SP ID (URL)

● IdP location info

● Supported Protocols

● Signing Certificates/Keys

● User Attributes Desired



Authentication Flow



SP Client IdP
Admin Page Please

Client: https://myapp.ucdavis.edu/admin



SP Client IdP
Admin Page Please

SP: https://????

Discover IdP



SP Client IdP
Admin Page Please

HTML Form to IdP

SP: https://shibboleth.ucdavis.edu/idp/profile/SAML2/POST/SSO

POST to IdP

Discover IdP



SP Client IdP
Admin Page Please

Redirect to IdP

SP: https://shibboleth.ucdavis.edu/idp/profile/SAML2/POST/SSO

POST to IdP

Discover IdP

Authenticate & Identify





SP Client IdP
Admin Page Please

Redirect to IdP

IdP: https://myapp.ucdavis.edu/login

POST to IdP

Discover IdP

Authenticate & Identify

Respond with HTML Form

POST to SP



SP Client IdP
Admin Page Please

Redirect to IdP

SP: Hi Scott! Here’s https://myapp.ucdavis.edu/admin

POST to IdP

Discover IdP

Authenticate & Identify

Respond with HTML Form

POST to SP

Admin Page OK



Shibboleth Timeline (DEMO)



Federation & Discovery



SP Client IdP
Admin Page Please

SP: https://????

Discover IdP



Federation & Discovery

<SSO 
entityID="https://shibboleth.ucdavis.edu
/idp">SAML2 SAML1</SSO>



Federation & Discovery

<SSO discoveryProtocol="SAMLDS" 
discoveryURL="https://myapp-dev.ucdavis.
edu/shibboleth-ds/index.html">SAML2 
SAML1</SSO>



Federation & Discovery

<SSO discoveryProtocol="SAMLDS" 
discoveryURL="https://wayf.incommonfeder
ation.org/DS/WAYF">SAML2 SAML1</SSO>



InCommon

https://wayf.incommonfederation.org/DS/WAYF

● Hosts secure metadata for Education & Research Institutions

● Includes a directory, key & certificates, and technical guidelines

● Operated by Internet2

https://wayf.incommonfederation.org/DS/WAYF


InCommon

● Identifiers

○ eduPersonUniqueId

○ eduPersonPrincipalName

● Mail attribute

○ mail

● Authorization attributes

○ eduPersonScopedAffiliation

○ eduPersonEntitlement



Review

● Web-based Authentication Flow

● Available on every UC Campus

● Implements SAML

○ Easy interop with external vendors



The Twitter Problem

● Authentication is great, but how we do distributed 

Authorization?

● Can we have a simpler protocol?

● Also I hear JSON is cool let’s use that



OAuth

● Developed by Twitter & Google & others

● Draft 2007, Published 2010

● Popular, but quickly surpassed by OAuth 2.0 in 2012



OAuth 2.0

● Supports many different authorization flows.

● Works with mobile apps, SPAs, IoT.

● Based on HTTP, uses TLS for security/encryption.

● Used at every major tech company as primary API 

auth.



Wait, I want to do Authentication!



OpenID Connect

● Simple, thin layer on top of OAuth 2.0

● Goal is Single Sign-on across many sites (SSO)

● Widely used for “Social Login”







OpenID Connect Flow

● Web based login flow

● Client approved attribute grant

● Optional backchannel validation



MyApp Client Google
Admin Page Please

Client: https://myapp.ucdavis.edu/admin 



MyApp Client Google
Admin Page Please

Client: https://accounts.google.com/o/oauth2/v2/auth?{params}

Redirect Auth Login Request Auth Login



https://accounts.google.com/o/oauth2/v2/auth?{params}

Options

● request_type

● client_id

● scope

● state

● request_uri (not required)



MyApp Client Google
Admin Page Please

Client: https://accounts.google.com/o/oauth2/v2/auth?{params}

Redirect Auth Login Request Auth Login







MyApp Client Google
Admin Page Please

Client: https://myapp.ucdavis.edu/oauth?code=[auth_code]&state=[mystate]

Redirect Auth Login Request Auth Login

Redirect return_uri
Request redirect_uri



MyApp Client Google
Admin Page Please

MyApp: https://www.googleapis.com/oauth2/v4/token?code=[auth_code]&client_id=[cid]

Redirect Auth Login Request Auth Login

Redirect return_uri
Request redirect_uri

POST Exchange Auth Code



MyApp Client Google
Admin Page Please

MyApp: https://myapp.ucdavis.edu/oauth

Redirect Auth Login Request Auth Login

Redirect return_uri
Request redirect_uri

POST Exchange Auth Code

POST ID Token



{
"token_type": "Bearer",
"expires_in": 3600,
"id_token": 

"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpX
VCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwi
bmFtZSI6IlNjb3R0IEtpcmtsYW5kIiwiZ
W1haWwiOiJzcmtpcmtsYW5kQHVjZGF2aX
MuZWR1IiwiYWZmaWxpYXRpb24iOiJTdGF
mZiIsImF3ZXNvbWVuZXNzIjoxMSwiaWF0
IjoxNTE2MjM5MDIyfQ.X5ReoSImK8rbQj
4-FxgyV-I6CXlnKMU1Gl2zDZdNCCE"
}



JWT:
Industry standard RFC 7519 

method for representing claims 
securely between two parties.



JWT

● Base64 Encoded

● 3 Parts, Separated by periods “.”

○ Header

○ Payload

○ Signature











JWT

● Essentially Bearer Tokens, don’t lose them!

● Client sends along with authenticated requests

● Easy to self-generate



Self Generated JWT



Method GET

URL https://myapp.ucdavis.edu/admin/edit/1

Cookie Authorization: 
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwi
bmFtZSI6IlNjb3R0IEtpcmtsYW5kIiwiZW1haWwiOiJzcmtpcmtsYW5kQHVjZGF2a
XMuZWR1IiwiYWZmaWxpYXRpb24iOiJTdGFmZiIsImF3ZXNvbWVuZXNzIjoxMSwiaW
F0IjoxNTE2MjM5MDIyfQ.X5ReoSImK8rbQj4-FxgyV-I6CXlnKMU1Gl2zDZdNCCE



OIDC Flow (Demo)



Other Auth Providers

● SAML & OAuth/OIDC work with almost all 

authentication providers.

● Including Azure AD, ADFS, AWS SSO, Okta, Auth0, etc.



Shibboleth / SAML

● Web-based flow

OAuth / OIDC

● Web-based flow



Shibboleth / SAML

● Server Attribute Release

OAuth / OIDC

● Client Attribute Grant



Shibboleth / SAML

● XML Based Protocol

OAuth / OIDC

● JSON Based Protocol 



Shibboleth / SAML

● Internal Cryptography

OAuth / OIDC

● Uses HTTPS/TLS



Shibboleth / SAML

● Web Server Install

OAuth / OIDC

● Mobile, Web, SPA, IoT 

flows



Thanks!

Scott Kirkland
UC DAVIS



Scott Kirkland
@srkirkland (UCTech)
github.com/srkirkland

srkirkland@ucdavis.edu





OAuth 2.0 Authorization Flow



MyApp Client Box.com
Authorize My Account

Client: Authorize MyApp to use my Box Account



MyApp Client Box.com
Authorize My Account

Client: https://account.box.com/api/oauth2/authorize?{options}

Redirect Auth Login Request Auth Login



https://.../authorize?{options}

Options

● request_type

● client_id

● scope

● state

● request_uri (not required)







MyApp Client Box.com
Authorize My Account

Client: https://myapp.ucdavis.edu/oauth?code=[auth_code]&state=[mystate]

Redirect Auth Login Request Auth Login

Redirect return_uri
Request redirect_uri



MyApp Client Box.com
Authorize My Account

MyApp: https://account.box.com/api/oauth2/token?code=[auth_code]&client_id=[cid]

Redirect Auth Login Request Auth Login

Redirect return_uri
Request redirect_uri

Exchange Auth Code



MyApp Client Box.com
Authorize My Account

MyApp: https://myapp.ucdavis.edu/oauth#access_token=[token]&state=[mystate]

Redirect Auth Login Request Auth Login

Redirect return_uri
Request redirect_uri

Exchange Auth Code

GET Access Token



Method GET

URL https://api.box.com/2.0/folders/0/items

Header Authorization: Bearer XueCAbegJQrp6fYp593jetd7ECnVCakj



OAuth Review

● Only handles Authorization

● Access Token is bearer token

● Client “approved” scope release


