
To the Cloud!
A Personal Journey



Server By Default
• I installed Linux on my laptop and set up Apache, MySQL, 

PHP there, so when I had access to my first server, that’s 
what I did.


• While Hand-Crafted Artisanal Servers (™) are great for 
learning, they don’t scale, and they soon annoy.


• Recipes came on the scene and made things better. Now 
I could stamp out my Artisanal httpd.conf files quickly but 
they were still dependent on the server environment and 
didn’t match my dev environment, and it was all still a 
little annoying.



Let There Be Containers!

• What the hell is a container?


• Don’t swear.


• Containers have been defined in a few ways — they’re 
really not complicated — but let me just say for this 
presentation, they’re a way to save the state of a server 
and spin it back up super quick, anywhere, sort of like 
cloning a VM only way, way, way lighter. They’re also 
nothing like VMs but I don’t have time for that.



Containers are like 
git commit 

for server setups.



Isn’t this presentation 
about the cloud?



What about the cloud?
• First, you don’t need the cloud. You could run the Docker daemon 

on your Hand-Crafted Artisanal (™) server and life would still be a 
little better for you.


• Clouds give me a few things:


• Cheap, quick backups that I don’t have to think about.


• Monitoring and alerts that I don’t have to think about.


• The pointy-hairs know exactly what it costs to offer the service.


• And most importantly of all, the platform vanishes entirely. I 
never have to run apt-get or dnf again.



I NEVER HAVE TO RUN 
apt-get AGAIN!!>!



But how?





This will be AWS specific but the concepts are 
useful.



We’re gonna need a 
few things …



Load Balancer



Image repository



Target group



Task definition



(Task definitions are 
immutable for some 

reason.)



Security group



CNAME records



Environment variable-
based configuration



(Environment variable-
based configuration may 

require some work)



Something called 
Fargate





(Whatever ‘elastic’ is 
referring to.)



Clusters



Services



CloudWatch



SNS



Health checks



(Health checks ironically 
take down my services 

on occasion.)



All delivered by an 
inconsistently-designed web 

interface that works okay.



Here’s how you 
container in AWS.







Repositories

• Amazon ECR is a managed AWS Docker registry service. 
Customers can use the familiar Docker CLI to push, pull, 
and manage images.



Repositories

• Amazon ECR is a managed AWS Docker registry service. 
Customers can use the familiar Docker CLI to push, pull, 
and manage images.

docker push [OPTIONS] NAME[:TAG]



Task Definitions
• A task definition is required to run Docker containers in Amazon ECS. Some of the 

parameters you can specify in a task definition include:


• The Docker image to use with each container in your task


• How much CPU and memory to use with each task or each container within a task 


• The launch type to use, which determines the infrastructure on which your tasks are hosted 


• The Docker networking mode to use for the containers in your task


• The logging configuration to use for your tasks


• Whether the task should continue to run if the container finishes or fails


• The command the container should run when it is started


• Any data volumes that should be used with the containers in the task


• The IAM role that your tasks should use



Task Definitions
• A task definition is required to run Docker containers in Amazon ECS. Some of the 

parameters you can specify in a task definition include:


• The Docker image to use with each container in your task


• How much CPU and memory to use with each task or each container within a task 


• The launch type to use, which determines the infrastructure on which your tasks are hosted 


• The Docker networking mode to use for the containers in your task


• The logging configuration to use for your tasks


• Whether the task should continue to run if the container finishes or fails


• The command the container should run when it is started


• Any data volumes that should be used with the containers in the task


• The IAM role that your tasks should use

docker run [OPTIONS] IMAGE[:TAG|@DIGEST] [COMMAND] [ARG...]



Services

• Amazon ECS allows you to run and maintain a specified 
number of instances of a task definition simultaneously in 
an Amazon ECS cluster. This is called a service.



Services







Target Groups

• Each target group is used to route requests to one or 
more registered targets. When you create each listener 
rule, you specify a target group and conditions. When a 
rule condition is met, traffic is forwarded to the 
corresponding target group



Target Groups

Mostly automatic when using the container service.



Load Balancers

• Elastic Load Balancing automatically distributes 
incoming application traffic across multiple targets, 
such as Amazon EC2 instances, containers, IP addresses, 
and Lambda functions.



Load Balancers



Do I need a load 
balancer? I don’t get 

1000 hits / s.



Sort of. You have 
options.



Handling Public Addresses

• Load balancer (CNAME record + configure traffic router)


• Elastic IP (very limited static IPs, presumably usable in 
ECS but double-check me)


• Use the public IP already given to the running task (very 
dangerous, can change when task shuts down)


• Don’t worry about it (background tasks don’t need public 
addresses but benefit from containerization)



WISDOM





Wisdom
• Make sure your services are all running in the proper security group. This was 

my biggest headache and it does not reveal itself easily.


• If your tasks appear to run but then shut down minutes later, make sure the 
health check isn’t killing them, e.g. checking on port 80 should return a HTTP 
302 but the health check is configured to only accept HTTP 200.


• You can use one application load balancer for many sites. This will save you 
$$$. I don’t know how I missed that.


• Round-trip latency between AWS and campus is enough to kill performance 
if you need many requests / s, e.g. your application is running on campus but 
your RDB is on AWS. Just move it all to the same place. Bite the bullet.


• Campus services (Banner!) are correctly firewalled. Take this into consideration. 
Moving to AWS means switching subnets. This may imply other changes.



What about CI? Or 
automated deploys using 

Terraform, etc.?



Ask me in a few 
months. I dunno.



CLI Workflow

$(aws ecr get-login --no-include-email --region us-west-2) 

docker build -t the-image . 

docker tag the-image:latest a.url.amazonaws.com/repo-name:latest 

docker push a.url.amazonaws.com/repo-name:latest 

aws ecs update-service —service service-name —force-new-deployment



Live demo?


