
Christopher Thielen, Evan Katsuranis. December 8, 2020.

CI/CD with Jenkins
Automating build, test, and deploy on-premise or in 
the cloud



Introduction to Jenkins



What is Jenkins?
The Gold Standard

• Jenkins is a self-hosted CI/CD tool which runs anywhere (Linux, Windows, 
macOS, VM in the cloud, etc).


• Jenkins can be run solo or in clusters for larger loads (e.g. E2E test suites).


• It is the oldest and most widely used continuous delivery tool to date


• Jenkins performs tasks organized into jobs. Jobs run through triggers, e.g. 
manual, API, repository push, another job etc.


• Tasks can be configured in Jenkins directly or through a pipelines file 
(Jenkinsfile) stored in a project’s source code repository.



Evolution of Jenkins
Historical? Modern?

• Jenkins (formerly Hudson) has been around since 2004, built by a developer 
who worked at Sun to automatically run his tests before deploying his code.


• Tired of incurring the wrath of his team every time he broke the build.


• Notably, Jenkins predates the DevOps movement, so is it still a good choice 
today?



Yes





Evolution of Jenkins
Historical? Modern?

• 2016 - Version 2.0 - Pipelines became standard


• Job tasks can be version controlled with source code


• 2018 - JCasC


• Jenkins can be configured via XML and scripts


• Continues to evolve: LTS releases and weekly releases



Why use Jenkins
Historical? Modern?

• Can’t use a cloud tool due to security requirements.


• Portability, Jenkins will run in any environment.


• Developer familiarity (15 million Jenkins Developers, 68% of CI done with 
Jenkins according to Business Wire in 2018.)



Demo



The Net Effect of CI/CD



The Net Effect of CI/CD

• Recall that Jenkins began as a way for a developer to not break builds and 
reduce friction with the team


• CI/CD is a standard which improves team/cross-team collaboration:


• Developers: Avoid breaking builds


• Product Owners: Encourage a testing culture with requirements traceability


• Security: Automated security scanning


• Reduction of friction improves agility, delivers features faster, keeps users 
happy



A Story of Adopting CI/CD



A Story of Adopting CI/CD
Pre-CI/CD

• Pre-CI/CD Practices:


• Team manually builds software.


• Team manually sets up and deploys to each environment.


• Test/Stage/Prod environments may drift if someone neglects an update.


• Any re-deployment or rollbacks are performed manually.


• Team may or may not have an artifact repository to restore previous 
deployments if needed.



A Story of Adopting CI/CD
Automate builds, automate test results

• Team spins up a CI/CD tool to automatically build artifacts


• Now there is an artifact repository where the team can deploy in a unified but 
manual process to deploy both new releases and rollbacks


• Later, team configures CI/CD tool to run tests on each commit



A Story of Adopting CI/CD
Push-button deployments

• Team configures CI/CD tool to connect to various servers (SSH keys, etc.)


• Team enables auto-deploy to a test environment, speeding up QA process


• With the buy-in from management, team configures a push-button approach 
to deploying those artifacts to other environments but still does not deploy to 
production automatically



A Story of Adopting CI/CD
Improvement with Metrics

• The team starts collecting metrics on its various environments and develops a 
baseline for the success of an automated deployment


• With this the team is ready to convince management to enable automatic 
deployments to production


• Those automatic deployments can then be measured for success 
automatically against the pre-defined baseline



A Story of Adopting CI/CD
CI/CD Nirvana

• Each push to the main repository is automatically run against a battery of 
tests. Upon passing, the changes are deployed to production.


• Production metrics are automatically monitored to determine the quality of the 
change and determine if a rollback is necessary (page load time, error rate, 
etc.)


• If necessary, a rollback is automatically performed based on the metrics.


• Team adopts feature flagging so completely new features or massive changes 
happen behind-the-scenes but still in production.



Thanks


